

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PRE MID-TERM EXAMINATION

PHYSICS (042)

MARKING SCHEME

Class: XI Time: 1hr
Date: 08.11.25 Max Marks: 25

General Instructions:

- i. There are three sections A, B, and C with 13 questions in total, Section A has 5 Multiple Choice Questions of one mark each, Section B has 4 questions of two marks each and Section C has 4 questions of three marks each.
- ii. All questions are compulsory.

Section A

(d) Proportional limit	1
(a) L	1
(a) pgh	1
(b) Hydraulic lift	1
(c) Assertion is correct, reason is incorrect.	1
Section-B	
Ratio of lateral strain to longitudinal strain.	1
v=-Longitudinal strain/Lateral strain.	1
Dimension less.	
$\Delta L=2\times 10^{-3} \text{ m}, r=10^{-3} \text{ m}, A=\pi r^2=3.14\times 10^{-6} \text{ m}^2$	
Strain = $\Delta L/L = 2 \times 10^{-3}/2 = 10^{-3}$.	
Stress = $Y \times \text{strain} = 2 \times 10^{11} \times 10^{-3} = 2 \times 10^8 \text{ Pa}$	2
(a) Nature of fluid (intermolecular forces)	
(b)Temperature (viscosity of liquids ↓ with ↑ temp, gases ↑ with ↑ temp)	
(c)Impurities present.	2
A liquid drop tries to have minimum surface area due to surface tension. For a given	
volume, the sphere has the least surface area, hence drops are spherical.	2
Section-C	
	(a) L (a) pgh (b) Hydraulic lift (c) Assertion is correct, reason is incorrect. Section-B Ratio of lateral strain to longitudinal strain. v=-Longitudinal strain/Lateral strain. Dimension less. $\Delta L = 2 \times 10^{-3} \text{ m, r} = 10^{-3} \text{ m, A} = \pi r^2 = 3.14 \times 10^{-6} \text{ m}^2$ $Strain = \Delta L/L = 2 \times 10^{-3}/2 = 10^{-3}.$ $Stress = Y \times strain = 2 \times 10^{11} \times 10^{-3} = 2 \times 10^{8} \text{ Pa}$ (a) Nature of fluid (intermolecular forces) (b) Temperature (viscosity of liquids \downarrow with \uparrow temp, gases \uparrow with \uparrow temp) (c) Impurities present. A liquid drop tries to have minimum surface area due to surface tension. For a given volume, the sphere has the least surface area, hence drops are spherical.

10. Force increases linearly with extension. Work done = average force \times extension = $\frac{1}{2}$ F Δ L.

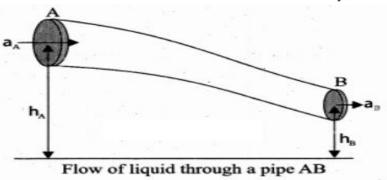
Per unit volume = $\frac{1}{2}$ $\sigma \epsilon$ 3

11. **Yield point:** Stress where material begins permanent deformation.

Ultimate stress: Maximum stress material can bear. 1 1

Breaking stress: Stress at which material finally breaks.

12. Formula:


 $F = \eta Av/d$

 $2=0.1\times A\times 1/0.0005$

 $A=2\times0.0005/0.1=0.01 \text{ m}^2$

13. (a)

Bernoulli's theorem: According to Bernoulli's theorem, the sum of pressure energy, kinetic energy, and potential energy per unit mass of an incompressible, non-viscous fluid in a streamlined flow remains a constant. Mathematically,

$$\frac{P}{\rho} + \frac{1}{2}v^2 + gh = \text{constant}$$

This is known as Bernoulli's equation. Proof: Let us consider a flow of liquid through a Flow of liquid through a pipe AB pipe AB. Let V be the volume of the liquid when it enters A in a time t which is equal to the volume of the liquid leaving B in the same time. Let a_A, v_A and P_A be the area of cross section of the tube, velocity of the liquid and pressure exerted by the liquid at A respectively. Let the force exerted by the liquid at A is

 $F_A = P_A x$ a_A Distance travelled by the liquid in time t is $d = v_A t$

Therefore, the work done is $W = F_A d = P_A a_A v_A t$

But $a_A v_A t = a_A d = V$, volume of the liquid entering at A.

Thus, the work done is the pressure energy (at A), $W = F_A d = P_A V$

Pressure energy per unit volume at A =
$$\frac{Pressure energy}{Volume} = \frac{P_A V}{V} = P_A$$

Pressure energy per unit mass at A =
$$\frac{\text{Pressure energy}}{\text{Mass}} = \frac{P_A V}{m} = \frac{P_A}{\frac{m}{V}} = \frac{P_A}{\rho}$$

Since m is the mass of the liquid entering at A in a given time, therefore, pressure energy of the liquid at A is

1

liquid at A is

$$E_{PA} = P_A V = P_A V \times \left(\frac{m}{m}\right) = m \frac{P_A}{\rho}$$

Potential energy of the liquid at A,

$$PE_A = mg h_A$$

Due to the flow of liquid, the kinetic energy of the liquid at A,

$$KE_{A} = \frac{1}{2}m v_{A}^{2}$$

Therefore, the total energy due to the flow of liquid at A, $E_A = E_{PA} + KE_A + PE_A$

$$E_A = E_{PA} + KE_A + PE_A$$

$$E_{A} = m\frac{P_{A}}{\rho} + \frac{1}{2}mv_{A}^{2} + mg h_{A}$$

Similarly, let a_B, v_B and P_B be the area of cross section of the tube, velocity of the liquid and pressure exerted by the liquid at B. Calculating the total energy at E_B

$$E_{\rm B} = m\frac{P_{\rm B}}{\rho} + \frac{1}{2}mv_{\rm B}^2 + mg\ h_{\rm B}$$

From the law of conservation of energy, $E_A = E_D$

$$m\frac{P_{A}}{\rho} + \frac{1}{2}mv_{A}^{2} + mgh_{A} = m\frac{P_{B}}{\rho} + \frac{1}{2}mv_{B}^{2} + mgh_{B}$$

$$\frac{P_{A}}{\rho} + \frac{1}{2}v_{A}^{2} + gh_{A} = \frac{P_{B}}{\rho} + \frac{1}{2}v_{B}^{2} + gh_{B} = \text{constant}$$

Thus, the above equation can be written as

$$\frac{P}{\rho g} + \frac{1}{2} \frac{v^2}{g} + h = constant$$

3